3.131 \(\int \csc ^4(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx\)

Optimal. Leaf size=234 \[ -\frac {(2 a+b) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 a f}-\frac {\cot (e+f x) \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}+\frac {2 (a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right )}{3 f \sqrt {a+b \sin ^2(e+f x)}}-\frac {(2 a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right )}{3 a f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}} \]

[Out]

-1/3*(2*a+b)*cot(f*x+e)*(a+b*sin(f*x+e)^2)^(1/2)/a/f-1/3*cot(f*x+e)*csc(f*x+e)^2*(a+b*sin(f*x+e)^2)^(1/2)/f-1/
3*(2*a+b)*EllipticE(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(a+b*sin(f*x+e)^2)^(1/2)/a/f/(1+b
*sin(f*x+e)^2/a)^(1/2)+2/3*(a+b)*EllipticF(sin(f*x+e),(-b/a)^(1/2))*sec(f*x+e)*(cos(f*x+e)^2)^(1/2)*(1+b*sin(f
*x+e)^2/a)^(1/2)/f/(a+b*sin(f*x+e)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.26, antiderivative size = 234, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3188, 475, 583, 524, 426, 424, 421, 419} \[ -\frac {(2 a+b) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 a f}-\frac {\cot (e+f x) \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}+\frac {2 (a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {\frac {b \sin ^2(e+f x)}{a}+1} F\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right )}{3 f \sqrt {a+b \sin ^2(e+f x)}}-\frac {(2 a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right )}{3 a f \sqrt {\frac {b \sin ^2(e+f x)}{a}+1}} \]

Antiderivative was successfully verified.

[In]

Int[Csc[e + f*x]^4*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

-((2*a + b)*Cot[e + f*x]*Sqrt[a + b*Sin[e + f*x]^2])/(3*a*f) - (Cot[e + f*x]*Csc[e + f*x]^2*Sqrt[a + b*Sin[e +
 f*x]^2])/(3*f) - ((2*a + b)*Sqrt[Cos[e + f*x]^2]*EllipticE[ArcSin[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[a
+ b*Sin[e + f*x]^2])/(3*a*f*Sqrt[1 + (b*Sin[e + f*x]^2)/a]) + (2*(a + b)*Sqrt[Cos[e + f*x]^2]*EllipticF[ArcSin
[Sin[e + f*x]], -(b/a)]*Sec[e + f*x]*Sqrt[1 + (b*Sin[e + f*x]^2)/a])/(3*f*Sqrt[a + b*Sin[e + f*x]^2])

Rule 419

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1*EllipticF[ArcSin[Rt[-(d/c),
2]*x], (b*c)/(a*d)])/(Sqrt[a]*Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &
& GtQ[a, 0] &&  !(NegQ[b/a] && SimplerSqrtQ[-(b/a), -(d/c)])

Rule 421

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Dist[Sqrt[1 + (d*x^2)/c]/Sqrt[c + d*
x^2], Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d*x^2)/c]), x], x] /; FreeQ[{a, b, c, d}, x] &&  !GtQ[c, 0]

Rule 424

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]*EllipticE[ArcSin[Rt[-(d/c)
, 2]*x], (b*c)/(a*d)])/(Sqrt[c]*Rt[-(d/c), 2]), x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[
a, 0]

Rule 426

Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Dist[Sqrt[a + b*x^2]/Sqrt[1 + (b*x^2)/a]
, Int[Sqrt[1 + (b*x^2)/a]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] &&  !GtQ
[a, 0]

Rule 475

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*e*(m + 1)), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 524

Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/
b, Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n]),
x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&  !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[
d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-(b/a), -(d/c)]))))))

Rule 583

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*g*(m + 1)), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 3188

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[(ff^(m + 1)*Sqrt[Cos[e + f*x]^2])/(f*Cos[e + f*x]), Subst[Int[(x^m*(a + b*ff^2*
x^2)^p)/Sqrt[1 - ff^2*x^2], x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] &&  !In
tegerQ[p]

Rubi steps

\begin {align*} \int \csc ^4(e+f x) \sqrt {a+b \sin ^2(e+f x)} \, dx &=\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {\sqrt {a+b x^2}}{x^4 \sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{f}\\ &=-\frac {\cot (e+f x) \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}+\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {2 a+b+b x^2}{x^2 \sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 f}\\ &=-\frac {(2 a+b) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 a f}-\frac {\cot (e+f x) \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}-\frac {\left (\sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {-a b+b (2 a+b) x^2}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 a f}\\ &=-\frac {(2 a+b) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 a f}-\frac {\cot (e+f x) \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}+\frac {\left (2 (a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {a+b x^2}} \, dx,x,\sin (e+f x)\right )}{3 f}-\frac {\left ((2 a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x)\right ) \operatorname {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 a f}\\ &=-\frac {(2 a+b) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 a f}-\frac {\cot (e+f x) \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}-\frac {\left ((2 a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {1+\frac {b x^2}{a}}}{\sqrt {1-x^2}} \, dx,x,\sin (e+f x)\right )}{3 a f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {\left (2 (a+b) \sqrt {\cos ^2(e+f x)} \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {1-x^2} \sqrt {1+\frac {b x^2}{a}}} \, dx,x,\sin (e+f x)\right )}{3 f \sqrt {a+b \sin ^2(e+f x)}}\\ &=-\frac {(2 a+b) \cot (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 a f}-\frac {\cot (e+f x) \csc ^2(e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 f}-\frac {(2 a+b) \sqrt {\cos ^2(e+f x)} E\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {a+b \sin ^2(e+f x)}}{3 a f \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}+\frac {2 (a+b) \sqrt {\cos ^2(e+f x)} F\left (\sin ^{-1}(\sin (e+f x))|-\frac {b}{a}\right ) \sec (e+f x) \sqrt {1+\frac {b \sin ^2(e+f x)}{a}}}{3 f \sqrt {a+b \sin ^2(e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.19, size = 188, normalized size = 0.80 \[ \frac {\frac {\cot (e+f x) \csc ^2(e+f x) \left (4 \left (2 a^2+4 a b+b^2\right ) \cos (2 (e+f x))-(2 a+b) (8 a+b \cos (4 (e+f x))+3 b)\right )}{2 \sqrt {2}}+4 a (a+b) \sqrt {\frac {2 a-b \cos (2 (e+f x))+b}{a}} F\left (e+f x\left |-\frac {b}{a}\right .\right )-2 a (2 a+b) \sqrt {\frac {2 a-b \cos (2 (e+f x))+b}{a}} E\left (e+f x\left |-\frac {b}{a}\right .\right )}{6 a f \sqrt {2 a-b \cos (2 (e+f x))+b}} \]

Antiderivative was successfully verified.

[In]

Integrate[Csc[e + f*x]^4*Sqrt[a + b*Sin[e + f*x]^2],x]

[Out]

(((4*(2*a^2 + 4*a*b + b^2)*Cos[2*(e + f*x)] - (2*a + b)*(8*a + 3*b + b*Cos[4*(e + f*x)]))*Cot[e + f*x]*Csc[e +
 f*x]^2)/(2*Sqrt[2]) - 2*a*(2*a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticE[e + f*x, -(b/a)] + 4*a*(
a + b)*Sqrt[(2*a + b - b*Cos[2*(e + f*x)])/a]*EllipticF[e + f*x, -(b/a)])/(6*a*f*Sqrt[2*a + b - b*Cos[2*(e + f
*x)]])

________________________________________________________________________________________

fricas [F]  time = 0.45, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {-b \cos \left (f x + e\right )^{2} + a + b} \csc \left (f x + e\right )^{4}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(-b*cos(f*x + e)^2 + a + b)*csc(f*x + e)^4, x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sin \left (f x + e\right )^{2} + a} \csc \left (f x + e\right )^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*sin(f*x + e)^2 + a)*csc(f*x + e)^4, x)

________________________________________________________________________________________

maple [A]  time = 1.49, size = 342, normalized size = 1.46 \[ \frac {2 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, \EllipticF \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2} \left (\sin ^{3}\left (f x +e \right )\right )+2 b \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, \EllipticF \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a \left (\sin ^{3}\left (f x +e \right )\right )-2 \sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, \EllipticE \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a^{2} \left (\sin ^{3}\left (f x +e \right )\right )-\sqrt {\frac {\cos \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {a +b \left (\sin ^{2}\left (f x +e \right )\right )}{a}}\, \EllipticE \left (\sin \left (f x +e \right ), \sqrt {-\frac {b}{a}}\right ) a b \left (\sin ^{3}\left (f x +e \right )\right )+2 a b \left (\sin ^{6}\left (f x +e \right )\right )+b^{2} \left (\sin ^{6}\left (f x +e \right )\right )+2 a^{2} \left (\sin ^{4}\left (f x +e \right )\right )-b^{2} \left (\sin ^{4}\left (f x +e \right )\right )-a^{2} \left (\sin ^{2}\left (f x +e \right )\right )-2 a b \left (\sin ^{2}\left (f x +e \right )\right )-a^{2}}{3 a \sin \left (f x +e \right )^{3} \cos \left (f x +e \right ) \sqrt {a +b \left (\sin ^{2}\left (f x +e \right )\right )}\, f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(f*x+e)^4*(a+b*sin(f*x+e)^2)^(1/2),x)

[Out]

1/3*(2*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a^2*sin(f*x+e)^3
+2*b*(cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticF(sin(f*x+e),(-1/a*b)^(1/2))*a*sin(f*x+e)^3-2*(
cos(f*x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a^2*sin(f*x+e)^3-(cos(f*
x+e)^2)^(1/2)*((a+b*sin(f*x+e)^2)/a)^(1/2)*EllipticE(sin(f*x+e),(-1/a*b)^(1/2))*a*b*sin(f*x+e)^3+2*a*b*sin(f*x
+e)^6+b^2*sin(f*x+e)^6+2*a^2*sin(f*x+e)^4-b^2*sin(f*x+e)^4-a^2*sin(f*x+e)^2-2*a*b*sin(f*x+e)^2-a^2)/a/sin(f*x+
e)^3/cos(f*x+e)/(a+b*sin(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {b \sin \left (f x + e\right )^{2} + a} \csc \left (f x + e\right )^{4}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)^4*(a+b*sin(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*sin(f*x + e)^2 + a)*csc(f*x + e)^4, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\sqrt {b\,{\sin \left (e+f\,x\right )}^2+a}}{{\sin \left (e+f\,x\right )}^4} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*sin(e + f*x)^2)^(1/2)/sin(e + f*x)^4,x)

[Out]

int((a + b*sin(e + f*x)^2)^(1/2)/sin(e + f*x)^4, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {a + b \sin ^{2}{\left (e + f x \right )}} \csc ^{4}{\left (e + f x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(f*x+e)**4*(a+b*sin(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*sin(e + f*x)**2)*csc(e + f*x)**4, x)

________________________________________________________________________________________